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Abstract—A novel application of conservation integrals in transient elastodynamic crack analysis
is presented to derive non-hypersingular time-domain boundary integral equations (BIEs). The new
derivation is based on an elastodynamic conservation integral which is employed to express the
displacement gradients in terms of an integral over the surface of the crack. BIEs are obtained by
substituting this representation integral into Hooke's law and by taking a limit process. The BIEs
obtained in this manner are valid for arbitrary crack configurations, and they are immediately non-
hypersingular. The Laplace and the Fourier transforms of these BIEs agree with those obtained by
other authors by using the conventional derivation in conjunction with regularization techniques.
Numerical examples show that the time-domain BIEs presented here can yield highly accurate
resuits for elastodynamic stress intensity factors.

L. INTRODUCTION

Conservation laws or path-independent integrals are frequently used for characterizing the
singular stress and strain ficlds near crack tips in fracture mechanics. The most widely used
path-independent integral in fracture mechanics is the Jintegral of Eshelby (1956) and Rice
(1968). In lincar elastic fracturc mechanics, the J integral has a precise and clear physical
interpretation as the energy release rate per unit crack-tip extension, and it is related to the
well-known stress intensity factors which control the singular crack-tip ficld. In clastic-
plastic fracture mechanics under the use of the deformation theory of plasticity the value
of J represents the strength of the HRR-singularity ficld which dominates in a region larger
than the fracture process zone and the zone of finite deformation. Thus, in both linear and
non-linear fracture mechanics the onset of crack growth can be correlated with a critical
value of J. The attractive features of J, namely its energy-based definition and its path
independence have been advantageously exploited in the development of fracture
mechanics. In recent years, several new conservation integrals have been proposed as crack-
tip characterizing parameters, to take thermal, inertial and inelastic effects into account.
Most of these works are motivated by the belief that new conservation integrals will lead
to further advances in fracture mechanics. In this paper, a novel application of conservation
integrals in transient clastodynamic crack analysis is presented, to derive suitable time-
domain BIEs, The corresponding frequency-domain formulation has recently been pre-
sented by Zhang and Achenbach (1989b).

The conventional derivation of time-domain BIEs is an extension of the procedure for
clastostatics proposed by Rizzo (1967) und Crusc (1969). This derivation is based on the
Betti-Rayleigh reciprocal theorem for two independent elastodynamic states of the same
body. By choosing onc of the states as the unknown scattered field and the other as
the fundamental solution (the Green's function) due to an impulsive unit point force, a
representation integral for the scattered displacement field can be derived. For wave scatter-
ing by a crack in an unbounded body, the integral is over the surface of the crack and it
contains the crack-opening displacements (the displacement jumps across the crack faces)
and the Green’s function terms in its integrand. The usual limiting process on this rep-
resentation integral as the observation point approaches the crack faces leads to a degenerate
BIE formulation, as shown by Cruse (1978) for elastostatic crack analysis. This difficulty
is overcome by the use of the representation integral for the traction components, and their
corresponding boundary integral equations. Such BIEs are, however, hypersingular, and

267

SAS 28:3-A



268 CH. ZuaNG

X3

Fig. 1. A 3D cruck of arbiteary shape: (a) x v -plane, (b) top view,

they cannot be solved directly by numerical methods. To circumvent these difficulties several
regularization procedures have been proposed {Budiansky and Rice. 1979 Budreck and
Achenbach, 1988 : Guo ef of., 1988 Hirose and Achenbach. 1988, 1989 ; Nishimura ef al..
1987a,b, 1988 ; Nishimura and Kobayashi, 1988, 1989 ; Schmerr, 1982 ; Sladek and Sladek,
1984 ; Tan, 1975; Zhang and Achenbach, 1988a,b, 1989a; Zhang, 1990a). Most of these
works first reduce the higher-order singularities to integrable ones, and then solve the
modified BIEs numerically. The reduction of the hypersingularities is achieved by using
partial integration techniques, The required manipulations are reasonably easy for simple
crack configurations such as 31D planar or 2D straight cracks, but they become cumbersome
for arbitrarily-shaped cracks.

This paper presents a novel derivation of non-hypersingular time-domain BIEs for
transient elastodynamic crack analysis, The new derivation is based on an clastodynamic
conservation integral, the /; integral, By using this integral, a two-state conservation integral
is derived which can be employed to express the gradients of the scattered displacements in
terms of an integral over the surface of the cruck. The representation integral relates the
scattered displacements and their derivatives via Green's function terms in the integrand.
The corresponding representation integral for the traction components is derived by the
use of Hooke's law. BIEs are subsequently obtained by taking 4 limit process on the
representation formula for the tractions. The BIEs that are obtained in this manner are
valid for arbitrary crack configurations, and their Fourier and Laplace transforms agree
with those results obtained by other authors in the transtormed domain, via the conventional
derivation in conjunction with regularization techniques. An essential advantage of the new
derivation is that it leads directly to non-hypersingular BIEs, which allow an immediate
and reliable numerical implementation. BIEs derived from the complementary conservation
integral /% are also given, but these equations do not offer advantages over the conventional
formulation.

3. GOVERNING EQUATIONS AND CONVENTIONAL BIE DERIVATION

Let us consider a three-dimensional crack of arbitrary shape in an infinite, homo-
geneous, isotropic and linearly elastic solid, as shown in Fig. I. The faces of the crack are
assumed to be infinitesimally close prior to loading, and they do not interact with each
other when external loads are applied. This approximation is acceptable for real cracks
whose faces are initially sufficiently separated so that the faces will not touch when the body
is disturbed.

The stress equations of motion are given by (Achenbach, 1973 Eringen and Suhubi,
1975)
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6. +pf = pi,. 4))

where ¢,; denotes the stress components. f, denotes the body force components. y; defines
the displacement components. and p is the mass density. In eqn (1), superscript dots indicate
derivatives with respect to time ¢, () ; represents derivatives of («) with respect to spatial
variables x,. and the conventional summation rule over double indices is implied. In the
linear theory the strain components are defined by

8,,- = %(“r.l +ul.i)- (2)
The stress and the strain components are related by Hooke's law
Gi; = Ciina€u (3)

where C,;,, are the components of the elasticity tensor which for isotropic materials can be
written as

Ciir = A0, 04y + 11004 0,1+ 0,0,4). 1))

Here, Z and p are Lamé’s elastic constants and J,, is the Kronecker delta. As boundary
conditions, the tractions vanish on the faces of the crack, i.e.

n =0 xed, (9)

1, =a,n,
where 4 = A"+ 4 . For a scattering problem A © is the insonified side of the crack and
A is the shadow side. Also, #, is the unit normal vector of 4. The initial conditions are

w(x,t) =u(x,) =0 fort=0. (6)

Assume that the crack is subjected to a loading induced by an incident wave ; then the total
field generated by the interaction of the incident wave with the crack can be written as

u,=u"+uf, a, =0, +a);, @)

where «" and o} represent the incident field in the absence of the crack, and ) and 6%
define the scattered field. For a given incident field, the scattered field has to be determined
so that the governing equations (1)-(6) are satisfied for all values of time ¢.

The conventional derivation of time-domain BIEs is an extension of the procedure for
elastostatics proposed by Rizzo (1967) and Cruse (1969). This derivation is based on the
elustodynamic reciprocal theorem which relates two distinct elastodynamic states of
the same body. By taking one state as the unknown scattered field and the other as the
fundamental solution duc to an impulsive unit point force, a representation integral for the
scattered displacements can be obtained. For the present problem, this representation
integral takes the following form

uE(x, 1) = J;’ o *Aun, dA(y), x¢A”, 8)

where x and ¢ denote the position vector and the time variable of the observation point,
o5 is the stress Green's function of the uncracked fullspace (Appendix A), and Ay, defines
the crack-opening displacements (displacement jumps across the faces of the crack). Also,
+ denotes Riemann convolution
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grehix, 1} = f gix, t—1h{x r}dr 1y
13

Boundary integral equations can be derived from (%) by taking the Emit x — 4~ However.
such BIEs degenerate for crack analysis, as shown by Cruse (1978) for the static case. This
difficulty is overcome by using the representation integral for the traction components,
which is obtained by substituting eqn (8) into Hooke's law and by using t, = 0, N, 48

'y
!;c{x‘ ’) = -—»C’,,an(x) j R VSgJ * Au,n',- d.‘”}). X¢ A7 (H})

A

Then, BIEs can be derived {from egn (10) by letting x — .4 and by applying boundary
conditions (5). Unfortunately, these BIEs are hypersingular when the observation point x
and the source point y coincide, since in this case the terms 6%, behave as (Wheeler and
Sternberg, 1968)

gCS“ ‘3: !;[(1, ZD‘ as f-—-tG {fi}
Tyt D, ' |

where r = [x —y|. For two-dimensional problems, additional hypersingularitics like

. i
(43 ¥ 3,

a, W e e e, A5 {F - P s, 13
sk § [ _{}3 red) 5.2 { - PRy {12}

occur in egn {10). Here, ¢, is cither the longitudinal wave speed ¢ or the transverse wave
speed ¢p, where

o= [A+2m/p]"% oo =A{u/p)". {3

The hypersingulurities (11) and (12) prevent a reliuble direct numerical solution of the
system of BIEs obtained from eqn (10). Thus, special attention must be paid in developing
numerical procedures.

For cracks under transient loading, several regularization technigues have been pro-
posed in the literature {Guo er al., 1988 | Hirose and Achenbach, 1988, 1989 Nishimura
et al., 1987a.b, 1988 ; Zhang and Achenbach, 1988a, 1989a; Zhang, 1990a). Similar investi-
gations for cracks under time-harmonic wave loading can be found in Budiansky and Rice
(1979}, Budreck and Achenbach (1988), Nishimura and Kobayashi (1988, 1989), Schmerr
{1982}, Sladek and Stadek (1984}, Tan (1975) and Zhang and Achenbach (1988b}. The
corresponding elastostatic crack analysis using BIE methods was presented several years
ago by Cruse (1978}, Weaver (1977) and many other authors (Cruse, 1988). The common
feature of all these works is the use of partial integration to reduce the higher-order
singularities. This technique is easily implemented and well established for flat or straight
cracks, but it becomes cumbersome for cracks of arbitrary shape. In the following sections,
a novel derivation is presented which is based on an elastodynamic conservation integral.

3. THE J, INTEGRAL AND THE NOVEL BIE DERIVATION

As in elastostatics. several conservation laws or path-independent integrals are valid
for transient elastodynamics (Fletcher, 1976, Gurtin, 1976, 1977; Jiang. 1986 Zhang,
1990b}. One of them may be stated as
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[k = J [é(amn ® Umn “"’P": * ut)(sjk "'ar/ * “Lk}n) dS—J pj; * U,k dV = 0, (‘4)
S v

where S is the surface and V is the volume of a body. and #; is the unit outward normal
vector. The assumptions for (14) to be true are the absence of singularities in V and the
null initial conditions. eqn (6). To prove eqn (14), the divergence theorem is applied to the
first integral of (14). This yields

I, = J {%(dlm! * Uy, Pl ) —(o;* “:'Jz).;} dV—j' pfisu,dV=0. (15)
v v

By using the following properties of Riemann convolutions

grh="heg,
(g+h)se=gre+hre,
(g*h), =g,vh+g*h,,
(g*h) = g»h+g(x.00h(x, 1), (16a—d)

it can be shown that
(Glf * "i.k ).i = %(“l”’l * “m.n+pﬁe * ux).k “‘ﬁﬁ * u"kv (i?)
where egns (1)-(4) and (6) have been employed. Substitution of eqn (17) into eqn (15)

leads to [, = 0. This completes the proof of eqn (14).
Consider now two independent clastodynamic states of the same body

[, b, fivy, (18)
{w o, 1P} (19

and require that these states satisfy the governing eqns (1)-(4) and the zero initial conditions
{6). According to the superposition principle, the sum of (18) and (19)

w=u+u?, o, =0 +aP, fi=f"+r, (20)

also satisfies eqns (1)~(4) and the zero initial conditions (6). Substitution of eqn (20) into
(14) results in

1 [u,] - !k[u(l!]+l [u‘ m f{(at ’tuf,,’),+pu“’au‘2’)5,k a“f’*u“’ af})‘“ ]n ds
S

-pL<f;"~usz*+f:m,;’>dv 0. @

Clearly, the terms [, [u!"] and [ [«!?] are identically zero because u!" and u!? are two
distinct elastodynamic states which satisfy eqns (1)-(4) and the initial conditions (6). From
eqn (21) the following identity is obtained

j- (o s+ piis " # 1)0 ~ 0P x ul}) — 0! « ulPIn, dS
A

= PJ (fI"suR +fPsul)dV. (22)
[ 4
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Fig. 2. A scatterer in an unbounded solid.

For /1" = f1¥ = 0, eqn (22) is reduced to the conservation law given by Gurtin (1976).
The first state is now chosen to be the unknown ficld

{,0 1) (1l W s
a0 =t a0, (23)
while the sccond state is selected as the fundamental solution duc to an impulsive unit point
force

W 6D, [0 = W, 6%, S(x—y)S(0a, (24)
where i/ and 67}, arc Green's functions for the uncracked fullspace (sce Appendix A), and
g, indicates the directions of the applied point force. By substituting (23) and (24) into eyn
(22) and by using the sifting property of the delta function, the volume integral of eqn (22)
is evaluated as

p J (S ul + S ) dV = aui(x.1). (25)
.
Thus, eqn (22) can be rewritten us
wi(x, 1) = J (Tt * Wi+ U # 65)0,4 — )y w105 —uii w075 1n, AS, x¢S, (26)
N

in which x represents the position vector of the observation point, and y represents the
position vector of the source point. Application of eqn (26) to the surfaces S and S, (see
Fig. 2) results in

ll/‘i = J‘ Ilk dS+J I/k dS, (27)
A} S,

L4

where S is the surface of the scattcrer, Sg is the surface of a sphere with radius R, centered
at x, and /, represents the integrand of (26). The surface S is assumed to be closed. regular
and smooth, and the sphere with radius R must be sufficiently large so that the scatterer S
and all singularities are contained in it. To examine the integral over the surface of the
sphere, the following relationship can be used
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Ty =N, (28)
agnl * u:.n = Ugnlnn * '6—:. (29)
dS = R*dQ, (30)

where n, is the unit outward normal vector to the surface of the sphere and dQ is an element
of solid angle subtended by the area element dS. By substituting eqns (28)—(30) into (26)
and (27). and by using the following asymptotic expressions of the Green's functions for
r — x (see Appendix B)

Ottt = — P c S +0(1/r?), 30
I=LT
I Ge )
uGe=— Y —ud¥n +0(/r?). (32)
(=T G

one obtains

s N .
-[ ’Il( dx? = j R~[(/)l‘l‘,‘ + — d’n",) * ",(;(L)]nk dQ
Se S L
) A )
+J R“[(pii}‘ + o G n,) * U,C/"”:l'lk dQ. (33)
Su r

Here, «§™ and 4§ denote the longitudinal wave part and the transverse wave part of the
displacement Green’s function. Considering the following clastodynamic radiation con-
ditions (Eringen and Suhubi, 1975)

I!I_'n’l R(@Pn + pe i) = 0, (34)

lim R(aPn, +peyii) =0, (35)
it is concluded that

J; llk dS=0, as R— m. (36)

In eqns (34) and (35), 4" and 6!}’ represent the longitudinal wave part, while & and
o) represent the transverse wave part, of the scattered field. Equation (36) implies that the
integral over S, contributes nothing to the representation integral of the displacement
gradients of the scattered field.

By substituting cgn (26) into Hooke's luw the following representation formula for the
traction components is obtained

6(x. 1) = = Cpuny(x) f (5 * s+ UG » 6)5, — 05w S — UGy # 03], S, x ¢ S.
5
(37

Application of eqn (37) to a 3D crack yields
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Fig. 3. A curved crack in a 2D geometry.

[;f{ X. x’} = — C'{)z{l".‘ ”q{x) j‘ {('Tw(n;nl * Aam,n + P“;(f; * A{l‘,)(i,;‘ - G’S[ * A“nk }Hf dS‘
'
x¢gAd”, (38)

where Ax, are the crack-opening displacements and Au,, are their derivatives with respect
to ¥i. The last term of eqn (37) disappears because of the continuity of a; i, across the
crack faces. By letting x — 4 ¥ and by considering the boundary conditions on the fuces of
the crack, BIEs are obtained as

12N 1) = Cppatt, (X) f

G G P ; ~
[ * At + ] « Ali)S, — 0t} % B, Jn, A,
i,

xed', (39)
where " denotes the traction components on the faces of the crack induced by the incident
wave, and the integralis understood in the sense of the Cauchy principal values. The system
of BIEs (39) is valid for 313 cracks of arbitrary shapes. BIEs for 2D cracks in plane strain

and anti-plane strain can be derived directly from egn (39) by setting 0/cx, = 0. This results
in, for plane strain

X, 1) = Cyp (X)) J (0%, * Au_, + pi§. « Adi )0, —a%, « Au, Jn, ds,
o
xel", (40}

while for anti-plane strain

IY(X, 1) = py(x) (0%, y * Aury y + pdfy * Ali 1)y — 65y % Auy yln. ds,

oy
JI

xel™, (41)

where '™ denotes the insonified side of the 2D crack (Fig. 3). and the superscript g™
indicates the 2D Green's functions (see Appendix A). Also here, the integrals are understood
as the Cauchy principal values.

The unknown boundary guantitics in the BIEs (39)-(41) are the crack-opening dis-
placements and their derivatives, where the latter have the physical meaning of dislocation
densities. An essential advantage of the new derivation presented here is that it immediately
leads to non-hypersingular time-domain BLEs for crack analysis, and no elaborate manipu-
lations such as integration by parts have been used. From this point of view, the new
derivation allows an immediate and reliable numerical implementation. When the unknown
quantitics Aw, and Au,; have been computed. stresses and strains at an arbitrary internal
point can be calculated from egn (26) and egn (38). At internal points near the crack faccs,
i.e. for x close to A, accurate results for the stresses and strains can be obtained by using
eqns (26) and (38). In the conventional formulation without regularization, considerable
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numerical errors may occur at such points because of the presence of hypersingularities.
This phenomenon is often refered to as “boundary-layer effects™. To calculate the displace-
ment ficld at internal points the representation formula for the displacement. eqn (8). can
be employved.

Clearly. BIEs can also be derived from other conservation integrals by following
essentially the same procedure used here. Consider now for instance the complementary
conservation integral to /, which can be stated as

fi = J‘ (MG i * Uiy + P * 1)0, — G4 * 10]1; dS-J pfa*u, db =0, (42)
s v

The assumptions for (42) to be valid are the same as for /. The proof of eqn (42) can be
performed directly by using the divergence theorem, by considering eqns (1)—~(4) and (6).
and by employing the properties of Riemann convolutions (16a-d).

Following the procedure applied for deriving eqn (37), a novel representation integral
for the scattered traction components is obtained from eqn (42). The result is

o ) ; « T ey © G . o «
’;: (.0} = —~ Clu/lk Pl,,(\) f [(al(l:llf * ":;.n * + p":(; * “‘l“ )()Iln' -0, ;I.k * “l“ - "AI‘ * Gl\:.ff ]"l dS'
A

x¢S. 43

By applying egqn (43) to the crack faces, by letting x — 4 ¥ and by considering the boundary
conditions (5), a new set of BIEs can be derived. However, these BIEs are again hyper-
singubar and they have no advantages over those obtained by the conventional derivation,
This implies that not every conservation integral will lead to a convenient BIE formulation
for clastodynamic crack analysis.

4. EXAMPLES

The non-hypersingular time-domain BIEs (39) are valid for cracks of arbitrary shapes.
The Laplace transform of (39) is identical 1o the BIEs obtained by Sladek and Slidek
(1984), who used the conventional derivation in conjunction with a regularization technique.
For a planar 3D crack located in the plane x; = 0% (n, = n, = 0, ny = 1) of an unbounded
body, the BIEs (39) split into two uncoupled equations

ah{x. t) = J {42100 — 205,] x A, + p(A+2u)uSy + Adiy} dS,
I

xed*, (44)

o) =p J {lo5s—0%304) » Au, , + puy » Adi, } dS,
A*
XEA", a=f=1,2, (45)

in which ¢, and o} are the stress components induced by incident waves. It should be
noted here that eqn (44) is for the normal crack opening displacement Au,, while eqn (45)
ts for the transverse crack opening displucements Au,. The Fourier transform of eqns (44)
and (45) yields the equations obtained by Budiansky and Rice (1979), via the conventional
formulation in conjunction with regularization techniques.
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X2

Fig. 4. A 2D straight crack.

For a 2D straight crack defined by x, = 0* and |x,| < a (Fig. 4), and for plane strain.
the BIEs {40) take the following form

u

ol (X, 1) = uJ‘ {lo% —o% ] *Auy  +puf + Adly dyy. |y € a. (46)

-

67.(x, 1) = J A +208 s~ 208, | * Buy  + p(A+2pnd, * Adiy | dyy.
-

il <a (47)

while for anti-plane strain cqn (41) has the form

onix, 1) = #j (@8, y « Auy  +pufy « Ady) dyy. v < a (48)

In the case of plane strain, the BIE for the normal crack opening displacement Au, decouples
from the one for the transverse crack opening displacement Auy, as can be seen from eqns
(46) and (47). In the frequency domain, the system of BIEs (46) and (47) has the same
form as those derived by Tan (1975) who used the conventional formulation in conjunction
with regularization.

In general, the BIEs presented here must be solved numerically. Higher-order shape
functions for the unknown crack opening displacements are desirable since the BIEs in the
new derivation contain not only the functions Au,, but also their derivatives with respect to
space and time variables. Special care must be taken in the numerical implementation to
account for the local behavior of Aw, and Aw,; near crack edges, and for the singularitics of
the Green's functions at x = y. Because the BIEs presented here are time dependent, the
discretization of 1 is necessary. For the 3D case, Riemann convolutions of the BIEs can be
evaluated analytically by using the sifting property of the delta function. In the case of plane
strain and anti-plane strain, time integrations must be generally carricd out numerically, but
itis also possible to perform time integrations analytically with lincar interpolation functions
in ¢ (Guo et al., 1988 ; Hirose and Achenbach, 1988, 1989 ; Nishimura et af., 1987a,b. 1988 ;
Zhang and Achenbach, 1988a, 1989a ; Zhang, 1990a). Spatial integrations can be performed
numerically for regular elements (x # y) by using suitable quadrature formula, while carcful
analytical treatments for singular elements (x = y) are recommended.

As a test example, a straight anti-plane crack has been chosen because of its simplicity.
In this case, the BIE is given by eqn (48). Here, 67, is selected as a plane impulse of the
form



Derivation of non-hypersingular time-domain BIEs 277

o' = 1, cos 8 Hlcpt —sin 8(x, +a) —cos 8 x.]. 49

where 1, is the amplitude, 8 is the angle of incidence of the incident wave, and H[+] is the
Heaviside function. The unknown function Au;(y,, t) is approximated by

l N
Aus(yy, ) =3 3 w(rOn" (@A), (50)
Jj=in=l

in which 4, »,) is taken to be unity over cach element except for elements near crack tips.
For these elements a special function

#(n) = (axy)*? (5

is applied to describe the proper behavior of Au; at crack tips with y| = +a. A piecewise
linear shape function is used for #"(r)

| —|t—nAtjAL,  |t—nAt < At

1) = 9,

@ = {{). otherwise. 62)

With eqn (52) the convolution integrals of {(48) have been carried out analytically for
each timeinterval {1, _ . 1,]. Spatial integrations of eqn {48) have been performed analytically
for a constant shape function and numerically for the “crack tip shape function™, eqn (51).
The Mode-1H stress intensity factor can be calculated by using the relation

SN 110 3 L R
Kinte) = =g lim PERNLE Buy(¥y, 1), (33)

where * + " indicates the crack tips at x; = +a.

A total number of 50 elements of equal size, and 200 time steps have been used in the
numerical calculations. The time increment is chosen as ¢r A7 = 0.4a. No instability sign is
noted in the computational procedure. The calculated dynamic stress intensity factors,
which are normalized by their corresponding static values, are shown in Figs 5-6 for
compurison with the exact results of Thau and Lu (1970). A very good agreement between
both results is obtained.

5. CONCLUSIONS

A novel application of conservation integrals is presented, to derive non-hypersingular
time-domain BIEs for transient elastodynamic crack analysis. The new derivation is based
on an elustodynamic conservation integral, the 7, integral. Boundary integral equations
follow from [, in o direct and natural way, and they are immediately non-hypersingular,
This is an important advantage for the development of a numerical procedure for solving
these BIEs and for an accurate calculation of the stresses and strains at internal points close
to the crack faces. The BIEs presented here are valid for 3D or 2D cracks of arbitrary
shupes, and their Laplace and Fourier transforms agree with the known results obtained
by other authors using the conventional derivation in conjunction with regularization
techniques. The unknown quantities of the BIEs in the new derivation are the crack-opening
displacements and their derivatives with respect to space and time variables. Numerical
examples have shown that highly accurate results for elastodynamic stress intensity factors
can be obtained. BIEs for general initial boundary value problems (not necessary crack
problems) cun be derived from the representation integral for the traction components,
eqn (37). For the static case, the advantages and drawbacks of this kind of formulation
compared to the conventional formulation have been discussed by Hu (1987) by using a
similar procedure to that in this paper, and by Okada et al. (1988) who presented a
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displacement gradient BIE based on a weak form of the linear momentum balance law of
elastostatics.

Finally. it should be noted that BIEs can also be derived from other conservation
integrals by following essentially the same procedure as presented in this paper. This
does not, however, imply that every conservation integral will lead to a convenient BIE
formulation for elastodynamic crack analysis. The complementary conservation integral to
I gives rise, for example, to hypersingular BIEs which offer no advantages over the
conventional derivation.
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APPENDIX A: GREEN'S FUNCTION

The Green's function for 3D elastodynamic states is given by (Eringen and Suhubi. 1975

! e, o N[ Lo L '
uS'U(x, 1:y. 0) :=~——-[-—(—‘—’—~-5)J1 At —rryda+ ——0(1—-rC )}. (A1)
47![) r r o o
i) U3, SN[ .. . rr 8, ’
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dnp r r o CEr CpF
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where r = |X =y, r, = x,— .. and «5" and &7 represent the longitudinal and the transverse wave part of the
displacement ficld 6}, respectively. Here, the index “i" indicates the dircction of the displacements at an obser-
vation point x, while ;™ dcfines the direction of the applied impulsive unit point force at a point y. Similarly, the

stress Green's function can be partitioned as

6(;‘ - 0"““4—(1“2“. {,\.;)

] 4 [

in which af{'" and 6" are the stress componeats corresponding to the fongitudinal and the transverse wave

parts of the displacement field. Expressions for o83 and o™ can be obtained by substituting (A D) and (A2) into
Hooke's law, but they will not be given here for the sake of brevity.
The Green's functions for 2D plane strain and anti-plane strain elastodynamic stites are

i 208 -rt .
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where

Ry =(cir=r) % &=L T, (AT)

and H{s} denotes the Heaviside step function. The corresponding stress components can be obtained from (A3),
{A6) and Hooke's law,

APPENDIX B: ASYMPTOTICS OF THE 3-D GREEN'S FUNCTION
In deriving eqn (36), asymptotic expressions of the Green's functions have been used. By using the relations
r,=n, (Bl
1§ = alin,. {BY
one obtains

G = = poct = bpeiuir R = (=2l S —rie ) e B =du) | = A dip,

(B3
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(B4)
where #, is the unit outward normal vector to S,. and (" and §™ are the traction components on S,
corresponding to the longitudinal and the transverse wave part of the displacement Green's function. Forr — =,
the following asymptotics are obtained from (B3) and (B4) as

GV = —pe SV +0(1,r%), (BS)
G = —perdd™ +O(1ir), (BS)
or in equivalent forms as
G=6GYe§T = —p ¥ cad?+0(1F). (B7)
i=LT

Moreover. it can be easily shown that for r — x
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