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Abstract-A novel application of conservation integrals in transient elastodynamic crack analysis
is presented to derive non·hypersingular time·domain boundary integral equations (BIEs). The new
derivation is based on an elastodynamic conservation integral which is employed to express the
displacement gradients in terms of an integral over the surface of the crack. BIEs are obtained by
substituting this representation integral into Hooke's law and by taking a limit process, The BIEs
obtained in this manner are valid for arbitrary crack configurations. and they are immediately non­
hypersingular. The Laplace and the Fourier transforms of these BIEs agree with those obtained by
other authors by using the conventional derivation in conjunction with regularization techniques.
Numerical ellamples show that the time·domain BIEs presented here c.tn yield highly accurate
results for elastodynamic stress intensity factors.

I. INTRODUCTION

Conservation I<lws or path-independent integrals arc frequently used for characterizing the
singular stress <lnd strain fields ncar crack tips in fwcture mechanics, The most widely used
p.tth-independent integral in fr<tcture mechanics is the J integwl of Eshelby (1956) and Rice
(1968). In linear clastic fwcture mechunics. the J integml hus u precise .lnd clear physicul
interpret.ttion us the energy release rate per unit cruck-tip extension, .md it is related to the
well-known stress intensity factors which control the singular cwck-tip field. In e1astic­
plastic fructure mechanics under the usc of the deformation thcory of plusticity the value
of J represents the strength of the H RR-singularity field which domin'ltes in a region larger
than the fructure process zone and the zone of finite deformation. Thus, in both linear and
non-linear fracture mechanics the onset of cwck growth cun be correluted with a critical
vulue of J. The attractive feutures of J, numely its energy-bused delinition and its path
independence have been advantageously exploited in the development of fracture
mechanics. In recent yeurs, several new conservation integrals huve becn proposed as crack­
tip churacterizing parameters, to take thermal, inertial and inelastic effects into account.
Most of these works are motivated by the belief that new conservation integrals will lead
to further advances in fracture mechanics. In this paper, a novel application ofconservation
integrals in transient elastodynamic crack anulysis is presented, to derive suitable time­
domain BIEs. The corresponding frequency-domuin formulution has recently been pre­
sented by Zhang and Achenbach (1989b).

The conventional derivation of time-domain BIEs is an extension of the procedure for
c1astostatics proposed by Rizzo (1967) and Cruse (1969). This derivation is based on the
Betti-·Rayleigh reciprocal theorem for two independent elastodynamic states of the same
body. By choosing one of the states as the unknown scattered field and the other as
the fundamental solution (the Green's function) due to an impulsive unit point force. a
representation integral for the scattered displacement field can be derived. For wave scatter­
ing by a crack in an unbounded body, the integral is over the surface of the crack and it
contains the crack-opening displacements (the displacement jumps across the crack faces)
and the Green's function terms in its integrand. The usual limiting process on this rep­
resentation integral as the observation point approaches the crack faces leads to a degenerate
HIE formulation, as shown by Cruse (1978) for elastostatic crack analysis. This difficulty
is overcome by the use of the representation integral for the traction components, and their
corresponding boundary integral equutions. Such HIEs are. however, hypersingular. and
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Fig. \. A 3D I:nlck of arbitrary shape; (a) X,X ,·plane. (b) lop view,

they cannot be solved directly by numerical methods. To circumvent these difficulties several
regularization procedures have been proposed (Hudiansky and Rice. 1979; Hudreck and
Achenbach. 1985; Guo et tIr. 1988; Hirose and Achenbach. 1988. 1989; Nishimura et al..
1987a.b. 1988; Nishimura and Kobayashi, 1988, 1989; Schmerr, 1982; Sladek and Sladek,
1984; Tan. 1975; Zhang and Achenbach. I988a,b. 1989a; Zhang, 1990a). Most of these
works first reduce the higher-order singularities to integrable ones. and then solve the
modified BI Es numerically. The reduction of the hypcrsingularities is achieved by using
parti'll integration techniques. The required manipulations arc reasonably easy for simple
crack configurations such as )() planar or 20 straight cracks. but they become cumbersome
for arbitrarily-shaped cracks.

This paper presents a novel derivation of non-hypersingular time-domain HIEs for
transient clastodynamic cr;'lck analysis. The new derivation is based on an c1astodynamic
conservation integral. the II,; integraL Hy using this integral. a two-state conservation integral
is dcrived which can be employed to express the gradients of the scattered displacements in
terms of an integral over the surface of the crack. The representation integral relates the
scattered displacements and their deriv,ttives via Green's function terms in the integrand.
The corresponding representation integral for the traction components is derived by the
use of Hookc's law. HIEs arc subsequently obtained by taking a limit process on the
reprcsentation formula for the tractions. The BI Es that arc obtained in this manner arc
valid for arbitrary crack contigurations. and their Fourier and Laplace transforms agree
with those results obtained by other authors in the transformed domain. via the conventional
derivation in conjunction with regularization techniques. An essential advantage of the new
derivation is that it leads directly to non-hypersingular HIEs. which allow an immediate
.lIld reliable numerical implementation. Hi Es derived from the complementary conservation
integral/~ure ulso given, but thesc equations do not otTer advant'lgcs over the conventional
formulation.

2, GOVERNING EQUATIONS AND CONVENTIONAL HIE DERIVATION

Let us consider a three-dimensiomtl crack of arbitrary shape in an infinite. homo­
geneous, isotropic and linearly elastic solid. as shown in Fig. I. The faces of the crack are
assumed to be infinitesimally close prior to loading, and they do not interact with each
other when external loads are applied. This approximation is acceptable for real cracks
whose faces urc initially sufficiently separated so that the faces will not touch when the body
is disturbed.

The stress equations of motion .1re given by (Achenbach. 1973: Eringen and Suhubi.
1975)
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(I)

where a,; denotes the stress components, I. denotes the body force components, Ui defines
the displacement components, and p is the mass density. In eqn (I), superscript dots indicate
derivatives with respect to time I, (. ).j represents derivatives of (.) with respect to spatial
variables x" and the conventional summation rule over double indices is implied. In the
linear theory the strain components are defined by

(2)

The stress and the strain components are related by Hooke's law

(3)

where Ci;kl are the components of the elasticity tensor which for isotropic materials can be
written as

(4)

Here, ;. and tL are Lame's elastic constants and <5" is the Kronecker delta. As boundary
conditions. the tractions vanish on the faces of the crack, i.e.

I, = (T,,", = O. x E II. (5)

where II = II ~ + II . For a scattering problem II ~ is the insonified side of the crack and
II is the shadow side. Also, ", is the unit normal vector of II. The initial conditions are

u,(x. t) = li,(x. t) = 0 for / = o. (6)

Assume that the cmck is subjected to a loading induced by an incident wave; then the total
field generated by the intemction of the incident wave with the crack can be written as

(7)

where ujn and a:~ represent the incident field in the absence of the crack. and U';" and a~

define the scattered field. For a given incident field. the scattered field has to be determined
so that the governing equations (I )-(6) are satisfied for all values of time I.

The conventional derivation of time-domain BIEs is an extension of the procedure for
e1astostatics proposed by Rizzo (1967) and Cruse (1969). This derivation is based on the
e1astodynamic reciprocal theorem which relates two distinct elastodynamic states of
the same body. By taking one state as the unknown scattered field and the other as the
fundamental solution due to an impulsive unit point force. a representation integral for the
scattered displacements can be obtained. For the present problem. this representation
integral takes the following form

u'k(x, I) = r a~k. du,t1j dA (y). x ~ A'~ ,
J~~

(8)

where x and I denote the position vector and the time variable of the observation point.
a~k is the stress Green's function of the uncracked fullspace (Appendix A). and Au,defines
the crack-opening displacements (displacement jumps across the faces of the crack). Also•
• denotes Riemann convolution
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g-lI(x. t) == f' g(x. t-1:)n(x. t) cit',
Jo

Boundary integral equations can be derived from (8) by taking the limit x -. A ... However.
such BIEs degenerate for crack analysis. as shown by Cruse (1978) for the static case, This
difficulty is overcome by using the representation integral for the traction components.
which is obtained by substituting eqn (8) into Hooke's law and by using Ii' = (11'4 "" as

r
I;;'(x, t) ;: - C"qkln.,(X) J C3kJ" !lll,flj dA1J), Xif: A •

,~ .. ( 10)

Then. BIEs can be derived from eqn (10) by letting x .... A ~ and by applying boundary
conditions (5). Unfortunately. these BIEs are hypersingular when the observation point x
and the source point y coincide. since in this case the terms (1~"J behave as (Wheeler and
Sternberg. 1968)

(f I)

where r = Ix -yl. For two-dimensional problems. additional hypcrsingularitics like

(; I , "
(T -'i' ',I",' (r - r}' ... r",!{',-."k.l ',",- ['(---- - }"" '.' "'1~"" "i-I" -rjc; -

occur in cqn ClO), Here. c:, is either the longitudinal wave speed t't or the tmnsvcrsc wave
speed (',. where

{13}

The hypersingulurities (II) and (12) prevent a reliable direct numerical solution of the
system of BI Es obtllined from cqn (10), Thus. special attention must be paid in developing
numeric,1I procedures.

For cracks under tmnsient loading, several regUlarization techniques have been pro­
posed in the literature (Guo f!1 aI., 1988; Hirose and Achenbach. 1988, 1989; Nishimura
et at.• 1987a.b, 1988; Zhang and Achenbach. 1988a, 1989a; Zhang, 1990a). Similarinvesti·
gations for cracks under time·harmonic wave loading can be found in Budiansky and Rice
(1979), Budreck and Achenbach {1988}, Nishimura and Kobayashi (1988. 1989), Schmerr
(1982). Sladek and Sladek (1984), Tan (1975) and Zhang and Achenbach (l988b). The
corresponding elastostatic crack analysis using BlE methods was presented several years
ago by Cruse (1978), Weaver (l977) and many other authors (Cruse, 1988). The common
(eature of all these works is the use of partial integration. to reduce the higher-order
singularities. This technique is easily implemented and well established for Rat or straight
cracks. but it becomes cumbersome forcracks of arbitrary shape. In the following sections.
a novel derivation is presented which is based on an elastodynamic conservation integral.

3. THE I. INTEGRAL AND THE NOVEL BIE DERIVATION

As in elastostatics. several conservation laws or path-independent integrals are valid
for tTansi~nt elasto<iynamics (Fletcher. 1976; Gurtin. 1916. 1977; Jiang, 1986; Zhang.
1990b). One of them may be stated as
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where S is the surface and V is the volume of a body. and nj is the unit outward normal
vector. The assumptions for (14) to be true are the absence of singularities in V and the
null initial conditions. eqn (6). To prove eqn (14). the divergence theorem is applied to the
first integral of (14). This yields

By using the following properties of Riemann convolutions

g*h =h*g.

(g+h)*e =g*e+h*e.

(g * h),1 =g,l*h+g* h.l'

(g*hf =g*h+g(x.O)h(x.t).

it can be shown that

(16a-d)

(17)

where eqns (I H4) and (6) have been employed. Substitution of eqn (17) into eqn (15)
leads to h = O. This completes the proof of eqn (14).

Consider now two independent clastodynamic states of the same body

{Il(0 all) JOIl
, , IJ' l I.

{u(2) at 2) J.(2)}
t • 11" I ..

(18)

(19)

and require that these states satisfy the governing eqns (I )-(4) and the zero initial conditions
(6). According to the superposition principle. the sum of (18) and (19)

u - u(l) + ,P) a·· - a(ll +a(21 r - j(ll +j(21
I - I " II - ') 'J' Ji-, , .. (20)

also satisfies eqns (1 )-(4) and the zero initial conditions (6). Substitution of eqn (20) into
(14) results in

Clearly. the terms lk [u~ 0] and lk [UPI] are identically zero because ul o and UFI are two
distinct elastodynamic states which satisfy eqns (1)-(4) and the initial conditions (6). From
eqn (21) the following identity is obtained

i[(a(21 *,/11 +pil II * u'2)<5 _a(21 * u(ll_ a (O * u(21]n. dS
Itut "'.n , I Jk '/ I.k IJ ,~Ir J

S

= p Iv <Ill) *ull1+IFI *ulJl) d V. (22)



272

Fig. :!. A scatlerer in an unbounded solid.

For f: II == f)~) == O. eqn (22) is reduced to the conservation law given by Gurtin (1976).
The first state is now chosen to be the unknown field

f I II I II /./ I), _ f" "0'
( U, • (T" '. , f - ',/I, . (T". f • (23)

while the second state is selected as the fundamental solution due to an impulsive unit point
force

(24)

where 1I~; and (T~;, arc Green's functions for til\: uncracked fullspace (sec Appendix A). and
lI, indicates the directions of the applied point force. By substituting (23) and (24) into eqn
(22) and by using the sifting property of the ddta function. the volume integral of eqn (22)
is evaluated as

Thus, eqn (22) can be rewritten as

'" ( f[( (; '" G"'") . G ." (; "'] dSIII.k x, /) = S Umnl'" 1I",.n +pu" ,.. II, ()/k - (J'II ,.. 1I,.k - 1It/.k * (J, / II, ' xf. S,

(25)

(26)

in which x represents the position vector of the observation point. and y represents the
position vector of the source point. Application of eqn (26) to the surfaces Sand SH (sec
Fig. 2) results in

(27)

where S is the surface of the scattcrer. SR is the surface of a sphere with radius R, centered
at x. and Ilk represents the integrand of (26). The surface S is assumed to be closed, regular
and smooth. and the sphere with radius R must be sufficiently large so that the scatterer S
and all singularities are contained in it. To examine the integral over the surface of the
sphere, the following relationship can be used
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(28)

(29)

(30)

where Ilk is the unit outward normal vector to the surface of the sphere and dO is an element
of solid angle subtended by the area element dS. By substituting eqns (28)-(30) into (26)
and (27), and by using the following asymptotic expressions of the Green's functions for
r - x: (see Appendix B)

o "I ·Ot') 0(11 ')Ui/.k = - L. - tli/ ' Ilk + ,- ,
~-l.T c~

one obtains

i I d e" - i R~[( 0"': 1.",) GIll] dn
° Ik .) - ° I'", + ~- a,,", • 11,1 "k ~£

0\' .\. (l

(31 )

(32)

Here, U~;(ll und II~;( n denote the longitudinul wave part and the transverse wave purt of the
displacement Green's function. Considering the following clastodynamic radiation con­
ditions (Eringcn and Suhubi, 1975)

it is concluded that

lim R(a(l)n +pc ,itl') =0
H

'I I L , •
-+ s.

lim R(a(TJ n +pc .,;tTI) = 0
R ..... '.' II J I, '

L.JlkdS=O, asR-oo.

(34)

(35)

(36)

In eqns (34) and (35), U: ll and a:}-I represent the longitudinal wave part, while tI~TI and
a:r represent the transverse wave part, of the scattered field. Equation (36) implies that the
integral over SH contributes nothing to the representation integral of the displacement
gradients of the scattered field.

By substituting eqn (26) into Hooke's law the following representation formula for the
traction components is obtained

"'( ) - C (0) r[( 0 '" 0 ."")<5 0 '" G "') dS ~ Stp x, t - - pq/kllq X J\ amn/· tlm.n +PUi/ • Ut jk - a/ji. U,Jc - tI,/.k • a/i Ilj , X ~ .

(37)

Application of eqn (37) to a 3D crack yields



Fig. 3. A curved crack in a 2D geometry.

(38)

where all, are the crack-opening displacements and all,.k arc their derivatives with respect
to )',. Tht: last tt:rm of eqn (37) disappt:ars because of the continuity of (1~nl across the
crack faces. By letting x -+ A ' and by considering the boundary conditions on the faces of
the crack. BIEs arc obtained as

x E..r ' . (39)

where t;:' denotes the traction components on the faces oClhe crack induced by the incident
wave. and the inlcgral is underslood in Ihe sense of the Cauchy principal values. The system
of HIEs (39) is v:llid for 3D cracks of arbitrary shapes. HIEs for 2D cracks in plane strain
and anti-plane strain can be derived dinx:tly from eqn (39) by selting Ii/h' \ = n. This results
in. for plane strain

(40)

while for anti-plane strain

(';'(x. () = JlI1,dx) I' [(a~" * aliI, + PIl~1 * ali ,,6/1; - a\1 *aUI.tdn ds.
I" '

(41)

where r" denotes the insonilied side of the 20 crack (Fig. 3). and the superscript "g"
indicates the 20 Green's functions (sec Appendix A). Also here. the integrals arc understood
as the Cauchy principal values.

The unknown boundary quantities in the HIEs (39)-(41) an.: the crack-opening dis­
placements and their derivatives. where the latter have the physical meaning of dislocation
densities. An essential advantage oCthe new derivation presented here is that it immediately
leads to non-hypersingular time-domain HI Es for crack analysis, and no elaborate manipu­
lations such as integralion by parts have bccn used. From this point of vicw. Ihe new
derivation allows an immediate and reliable numerical implementation. When the unknown
quantitics all, and all,.k han.: bcen computed. stresses and strains at an arbitrary internal
point can be calculated from eqn (26) and eqn (38). AI internal points ncar the crack faces.
i.e. for x close 10 A. accurate results for the stresses and strains can be obtained by using
eqns (26) and (38). In the conventional formulation without regularization. considerable
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numerical errors may occur at such points because of the presence of hypersingularities.
This phenomenon is often refered to as "boundary-layer effects". To calculate the displace­
ment field at internal points the representation formula for the displacement. eqn (8). can
be employed.

Clearly. BIEs can also be derived from other conservation integrals by following
essentially the same procedure used here. Consider now for instance the complementary
conservation integral to h which can be stated as

The assumptions for (4:::!) to be valid are the same as for h. The proof of eqn (42) can be
performed directly by using the divergence theorem. by considering eqns (1)-(4) and (6).
and by employing the properties of Riemann convolutions (l6a-<1).

Following the procedure applied for deriving eqn (37). a novel representation integral
for the scattered traction components is obtained from eqn (42). The result is

x¢S. (43)

By applying eqn (43) to the crack faces. by letting x .... A .. and by considering the boundary
conditions (5). a new set of B1Es can be derived. However. these DIEs are again hyper­
singular and they have ntl advantages over those obtained by the conventiomtl derivati\m.
This implies that not every conservation integral will lead to 41 convenient HIE formulation
for c1astodynamic crack analysis.

4. EXAMI'LES

The non-hypersingular time-dom41in DI Es (39) are valid for cr41cks ofarbitrury shapes.
The Laplace transform of (39) is identic.tl to the DIEs obtained by Sladek and Sladek
(1984). who used the conventional derivation in conjunction with a regularization technique.
For a planar 3D crack loc.lted in the pl41ne Xl =O± (n, = n2 = O. nl = I) of an unbounded
body, the DIEs (39) split into two uncoupled equations

X E A ", cc = fJ = I, 2,

(44)

(45)

in which O"f, and aif, ure the stress components induced by incident waves. It should be
noted here that cqn (44) is for the normal crack opening displacement AUl. while eqn (45)
is for the transverse crack opening displacements Au•. The Fourier transform of cqns (44)
and (45) yields the equations obtained by Dudiansky and Rice (1979), via the conventional
formulation in conjunction with regularization techniques.
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fig. *. A 20 straight crack.

For a 20 straight crack defined by x~ = O± and Ixtl ~ a (Fig. 4), and for plane strain,
the BIEs (40) take the following form

(47)

while for anti-plane strain eqn (41) has the form

(48)

In the case of plane strain, the BI E for the normal crack opening displacement Au~ decouples
from the one for the transverse crack opening displacement Auj, as can be seen from eqns
(46) and (47). In the frequency domain, the system of BIEs (46) and (47) has the same
form as those derived by Tan (1975) who used the conventional formulation in conjunction
with regularization.

In general. the BIEs presented here must be solved numerically. Higher-order shape
functions for the unknown crack opening displacements are desirable since the BIEs in the
new derivation cont.lin not only the functions Au" but also their derivatives with respect to
space and time variables. Special care must be taken in the numerical implementation to
account for the local behavior of Alii and AU'. i near crack edges, and for the singularities of
the Green's functions at x = y. Because the BIEs presented here are time dependent, the
discretization of ( is necessary. For the 3D case, Riemann convolutions of the BIEs can be
evaluated analytically by using the sifting property of the delta function. In the case of plane
strain and anti-plane strain, time integrations must be generally carried out numerically, but
it is also possible to perform time integrations analytically with linear interpolation functions
in (Guo c( al., 1988; Hirose and Achenbach, 1988. 1989; Nishimura (!( aI., 1987a,b. 1988;
Zhang and Achenbach, 1988a, 1989a; Zhang, 1990a). Spatial integrations can be performed
numerically for regular elements (x #- y) by using suitable quadr.lture formula. while cureful
analytical treatments for singular elements (x = y) are recommended.

As a test example. a straight anti-plane crack has been chosen because of its simplicity.
In this case. the BIE is given byeqn (48). Here, <1'r~ is selected as a plane impulse of the
form
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O"f~ = ta COS (J H[cTt-sin O(X 1 +a)-cos Ox:J.
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(49)

where ta is the amplitude. (} is the angle of incidence of the incident wave. and H[.J is the
Heaviside function. The unknown function 6.UJ(.VI. t) is approximated by

J ."1

6.UJ(YIo t) =: L L ,uf(YI)I'(t)(6.uJ)j.
f-l,,-l

(50)

in which P-,(YI) is taken to be unity over each element except for elements near crack tips.
For these elements a special function

(51)

is applied to describe the proper behavior of 6.uJ at crack tips with YI == fa. A piecewise
linear shape function is used for ,.,"( t)

{
1-lt-n6.t l/6.t.

I'f(r);:::: O.
Ir-n6.t1 ~ 6.t.
otherwise.

(52)

With eqn (52) the convolution integrals of (48) have been carried out ~tnalyticallyfor
each time interval [t" _I. t,,}. Spatial integrations ofeqn (48) have been performed analytically
for a constant shape function and numerically for the "crack tip shape function". eqn (51).
The Mode-III stress intensity factor can be calculated by using the relation

(53)

where" ±.. indicates the cmck tips at XI =: fa.

A total number of 50 elements of equal size. and 200 time stcps have been uscd in the
numerical calculations. The time increment is chosen as e-rA! =O.4Cl. No instability sign is
noted in the computational procedure. The calculated dynamic stress intensity factors.
which arc normalized by their corresponding static values. are shown in Figs 5-6 for
comparison with the exact results of Thau and Lu (1970). A very good agreement between
both results is obtained.

S. CONCLUSIONS

A novel applic..ltion ofconservation integrals is presented, to derive non-hypersingular
time-domain BIEs for transient elastodynamic crack analysis. The new derivation is based
on an e1ustodynamic conservation integral. the I. integral. Boundary integral equations
follow from It in a direct and natural way. and they are immediately non-hypersingular.
This is an important advantage for the development of a numerical procedure for solving
these BI Es and for an accurate calculation of the stresses and strains at internal points close
to the cruck faces. The BlEs presented here are valid for 30 or 20 cracks of arbitrary
shapes. and their Laplace and Fourier transforms agree with the known results obtained
by other authors using the conventional derivation in conjunction with regularization
techniques. The unknown quantities of the BIEs in the new derivation are the crack-opening
displacements and their derivatives with respect to space and time variables. Numerical
examples have shown that highly accurate results for elastodynamic stress intensity factors
can be obtained. HIEs for general initial boundary value problems (not necessary crack
problems) can be derived from the representation integral for the traction components.
eqn (37). For the static case. the advantages and drawbacks of this kind of formulation
compared to the conventional formulation have been discussed by Hu (1987) by using a
similar procedure to that in this paper. and by Okada et al. (1988) who presented a
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displacement gradient BlE based on a weak form of the linear momentum balance law of
elastostatics.

Finally. it should be noted that BIEs can also be derived from other conservation
integrals by following essentially the same procedure as presented in this paper. This
does not. however. imply that every conservation integral will lead to a convenient BIE
fonnulation for elastodynamic crack analysis. The complementary conservation integral to
I~ gives rise. for example. to hypersingular BIEs which otTer no advantages over the
conventional derivation.
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APPENDIX A: GREEN'S FD;CTIO:\

The Green's function for 3D elastodynamic states is given by (Eringen and Suhuhi. I(F51

I [ (3r
,r, J,,) f"'" . d' r,r,. 1- - -, - _. ...,I(I-a) ... + __"I(I--rCt) .

41tp ,. roc,r
(AI)

[(
1 1 ) f'" .(;In . " 1 _',r, ( II t. . • . r,rl • , (),/.

II" (X.I.).O)=--.. -T'-"" 1.<l(l-u)d".---;-"I(I-rtrl+ .·,·,1(1
41tp r r" Crr Cir

(A2)

where r = Ix -yl. r, = -"'-Yi' and U~(l) and u~;tTl represent the It>ngitudinal and the transverse w;lve part of the
displacement lield u~;. respt.'Ctivcly. Here. the indell "i" indicates the direction of the displacements atitn obser­
vation point x. while "i" delines the direction of the applied impulsive unit point force at a p"int y. Similarly. the
stress Green's function c:tn be partitioned as

in which 17:::11 :tnd 17:::n arc the stress components corresponding 10 the longitudinal and the tran,ver,e wave
parts of the displacement Iicld. Ellpressions for 17:::l.l and 17:::n can be obtained by substituting (,.\ I) amI (A2) into
llooke's law, but they will not be given here for the sake of brevity.

The Green's functions for 20 plane strain and anti-plane strain clastodynamic slates arc

I { I [2C; (' - r' . ]
tI(xt'yO)=~'~"-'II(cI-r) ·····rr -R,)

III ., •• 2TCI' l'I.,1 l. R
1

·1 ,;1 l. Til

I fl(t-rcf)
/I~,(X.I;Y.O) '" ..,"'" -',--';--' i.. (A(,)

.. _1tll (r-r- ej) -

where

and 11[-) denotes the Heaviside step function. The corresponding stress components can be obtained from (A5).
(A6) and Hooke's law.

APPENDIX B: ASYMPTOTICS OF TilE 3·D GREE:--;'S FUNCTIOS

In deriving eqn (36). asymptotic ellprcssions of the Green's functions have been used. By using the relations

one obtains

'.1 ::= II,. (Bt)

,ilt - i.r) di.}.
(1m
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(~)

where n, is the unit outward normal vector to S~. and I~'LI and I~m are the traction components on S~

corresponding to the longitudinal and the transverse wave part of the displacement Green's function. For r - ex;.

the following asymptotics are obtained from (B3) and (84) as

or in equivalent forms as

I~ = 1~'LI + l~tTo = - p L c,li~'" +O(l'r:).
,- L.T

Moreover. it can be easily shown that for r - X

or

(B5)

(B6)

(B7)

(B8)

(B9)

(BIO)


